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Abstract 
In this paper we describe a software system built to 
coordinate an autonomous vehicle with variable 
configuration ability operating in rough terrain conditions. 
The paper describes the system architecture, with an 
emphasis on the action planning  function. This is 
intended to work with a proprioceptive algorithm that 
continuously coordinates wheel torques and suspension 
forces and positions to achieve optimal terrain crossing 
performance. 
 
Index terms: autonomy, rough terrain, proprioception, 
coordination, action planning 
 

1. Introduction 
 

 It has long been recognized that an ability to vary the 
configuration of a vehicle has the potential to improve the 
mobility of that vehicle when crossing large obstacles [1-
3]. However, there are very few examples in which 
systems have been developed to autonomously vary 
configuration in response to the terrain the vehicle is 
traversing. In this paper we describe a software system 
designed to achieve this in a wheeled vehicle with fully 
controllable, active suspension mechanisms. 
 
1.1 Architecture for Variable Configuration Vehicles 
 
     Terrestrial vehicles operate in a very different 
environment from the largely isotropic media through 
which air and water vehicles travel. Particularly when 
operating off-road, land vehicles must respond to frequent 
changes in gradient and soil properties, while responding 
appropriately to the presence of obstacles. This means 
that trajectory, and vehicle configuration re-planning must 
take place very frequently. Further, in order to optimally 
respond to variations in the terrain over which the vehicle 
is passing, it is necessary to have a coordination process 
running continuously to optimally translate vehicle 
trajectory commands into commanded values for the 
actuators that drive the vehicle and control its suspension. 
     Based on experience with previous programs, we 
adopted a layered planning, coordination and control 
architecture. The upper layer plans vehicle trajectory and 
configuration in response to exteroceptive sensor data, 
including data from both imaging and GPS navigation 
sensors, together with status information passed up from 
the coordination system. Vehicles with active suspension 
capability can be configured to optimally meet obstacles. 
For example, when engaging a large positive obstacle, it 

is necessary to raise the front wheels so that they contact 
the obstacle above the “friction height” at which the 
vehicle can generate sufficient traction for them to roll 
over the obstacle. In land vehicle operation there is 
insufficient time to run replanning algorithms every time 
the terrain conditions change. We adopted an architecture 
with a relatively simple master program that would select 
from a library of stored plans, or behaviors, as dictated by 
environmental conditions. The selection is based on the 
closeness of fit of the modeled characteristics of the 
terrain to a set of discriminator statistics for each 
behavior. 
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Figure 1: Geometric 0bstacle models in cross-section. 
The action planner selects from a library of such 
models. In turn, there is a library of possible action 
sequences for each model from which the planner 
selects. 
 
     The coordination, or proprioceptive, layer has the task 
of translating the vehicle velocity and configuration 
commands, generated by the active behavior, into 
commanded values of the actuator controllers. It responds 
to sensors internal to the system, hence the label 
“proprioceptive”. These include actuator feedback 
sensors, additional sensors on the vehicle and suspension 
structures, and an inertial measurement unit. It translated 
the vehicle motion commands into force commands via 
dynamic models of the vehicle and its suspension 
elements. The system level commanded forces were 
allocated to the wheel and suspension actuators on the 
basis of an optimizing principle. It is possible to do this 
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using efficient, closed-form computations for physically 
meaningful optimizing principles [7]. This might be 
thought of as smart traction control in analogy to 
conventional vehicles. In fact the system does far more 
than that. The proprioceptive algorithm must run 
continuously at update rates of the order of 100 Hz. It 
passes status information to the upper layer, enabling that 
layer to determine when it is necessary to terminate a 
segment of a plan and move on to a new segment.     The 
control layer consists of the actuator controllers. 
Coordination computations that have to be done at high 
update rates, such as those internal to a wheel-station with 
an active suspension, are also included in this level. This 
layer responds to the commanded force/torque, or 
position commands from the proprioceptive layer, and to 
the actuator feedback sensors. 
 

2. Planning Layer 
 
     When crossing geometric obstacles, or near 
approximations to such obstacles, use of the variable 
configuration capability provides significant 
improvements in performance. Consequently, for 
obstacles in this category relatively complex 
configuration plans, called action sequences in the 
following, have been developed. 
     For more general obstacles, the proprioceptive 
algorithm assumes a more important role with its ability 
to respond continuously to changes in the terrain. In this 
case relatively simple action sequences are appropriate, 
such as simply pitching back when engaging a positive 
obstacle, using the proprioceptive algorithm to effect a 
crossing of the obstacle, then returning to the normal 
vehicle attitude. 
     For purposes of this study, trajectory planning for 
geometric obstacles consists of making an appropriate 
selection from among a library of action sequence plans 
associated with each obstacle map. A basic set of 
geometric obstacle maps is shown in Figure 1. The 
generalized step obstacle can be used in either direction to 
develop plans for both positive and negative obstacles. 
Each plan consists of a series of segments to be executed 
in sequence. A segment consists of a set of rules for 
generating position/velocity commands to the 
proprioceptive layer. The termination of a segment is 
determined by satisfaction of an inequality of a function 
of system variables.  
      The proprioceptive layer may also notify the planner 
of inability to complete execution of a segment due to 
wheel slip, instability, or some other condition. The 
planner will then search the library of action sequence 
plans for that obstacle for another valid plan, and may 
initiate execution of that plan. 

 
3.  System Design 

 
Proprioceptive control was implemented using 

multiple distributed computational processes as shown in 
figure 2. Each layer in the system was implemented as its 

own process, although additional layers were included as 
necessary. Some additional processes used for mission 
specification and display, that are not germane to this 
paper,  are not depicted. 

The Mission Control Unit (MCU) and Vehicle 
Control Unit (VCU) are separate PC’s connected by a 
backplane. The Robot Executable and HServer are 
processes running on the MCU. The upper, action-
selection, layer was implemented in the Robot 
Executable, which is a program compiled for each 
particular mission, generated by the MissionLab software 
system1 [4]. Vehicle trajectory in the form of waypoints to 
a specific goal location is compiled into the Robot 
Executable. In addition, the library of stored behaviors for 
each specific obstacle type is stored and accessed here. 
The HServer (Hardware Server) process is used to handle 
the details of controlling a particular type of robot so that 
the Robot Executable can be kept as general as possible. 
The coordination, or proprioceptive layer, was 
implemented in the VCU, while the control layer was 
simulated using Visual Nastran. IPT, an inter-process 
communications package from Carnegie Mellon was used 
to handle the communication between the Robot 
Executable and HServer. Low-level shared memory was 
used for communication between HServer and the VCU 
due to the real-time requirements of the proprioceptive 
layer. 

 Robot 
Exec.

HServer 

VCU 

MCU

IPC 

Visual Nastran 
Figure 2: System Architecture 

 
When an obstacle is encountered, a stored behavior is 

selected by the upper layer in the Robot Executable. The 
upper layer then sends high-level vehicle control 
commands for the heading, speed, acceleration and either 
wheel heights or vehicle attitude based on the current 
segment of the behavior (Table 1). These values act as 
biases for the lower layers. For example, the control layer 

                                                           
1 MissionLab v5.0 is freely available at  
www.cc.gatech.edu/ai/robot-lab/research/MissionLab.html 
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will compute the best height of each wheel based on 
traction, with a bias towards the values provided by the 
upper layer.  

In addition, triggering conditions are sent for 
transitioning to the next behavioral phase. For example, 
when a positive obstacle is encountered the first phase of 
the behavior calls for the vehicle to move forward, while 
pitching the front of the vehicle upward 0.45 radians. The 
upper layer can also specify that the trigger for moving to 
the next segment of the plan is for  |ξ1, ξ2 | < 0.3 radians, 
where ξ1 and ξ2  are the angles for the contact force line 
of action on wheels 1 & 2 and the z axis, respectively. 

 

Table 1: Upper Layer commands to the 
 Proprioceptive Layer. 
 
 The triggering mechanisms are quite flexible. Any 
number of conditions might be involved. For example, the 
upper layer could specify a trigger when any of the wheel 
heights on the left side is greater than any of the wheel 
heights on the right side. Or, one or more parameters 
could be compared to a numerical values, such as the    
|ξ1, ξ2 | < 0.3rad example given above. Multiple triggering 
conditions could be specified for each state and identified 
with the request_num field of the message. 
     The strength in the design lies in its modularity and in 
the fact that the upper layer can execute at a much slower 
rate than is required by the lower layers. Since the 
triggering criteria is known by the proprioceptive layer, it 
can notify the upper layer of only those events that are of 
importance to the upper layer in its current state. This 
allows allows plan reconfiguration and interruption to 
occur from both the operator and high-level planner as 
well as due to unexpected interactions with the terrain or 
unpredicted vehicle performance. 
 

4. Design of Action Sequences 
 
     The development of a plan to surmount a given 
obstacle is a design problem. There are an infinite number 
of possible solutions. The first decision was to use a 
segmented plan. This simplifies the problem in several 
ways. It removes the need for close coupling between the 
planning and proprioceptive algorithms. Further, it is 
necessary to change the set of commanded variables from 

time to time, particularly to accommodate a change of 
vehicle configuration. That inherently segments the plan 
into a sequence of actions. Configuration of the vehicle 
can be addressed on a coarse time-scale. The plan 
becomes an action sequence in which the commanded 
values of the vehicle motion and configuration variables 
are constant on each segment of the plan, but the variables 
and/or values change at the transition to the next segment.  
     The essential elements of each plan segment are the set 
of variables used and the commanded values passed down 
to the proprioceptive algorithm, together with the 
conditions that determine the termination of the segment. 
     It is necessary that the command variables chosen be 
consistent with the number of degrees of freedom of the 
vehicle. For a wheeled vehicle the non-holonomic nature 
of the wheel contact implies that lateral displacement or 
velocity cannot be directly controlled. Thus, the number 
of controllable degrees of freedom of the vehicle body is 
five, given that an active suspension allows controlled 
motion along the vehicle’s vertical axis, and about the 
pitch and roll axes, as well as motion along the 
longitudinal axis and about the yaw axis. 
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Parameter Description 
use_reverse Flag to go in reverse 
wheel_flags Flag to indicate wheel heights to be commanded 

individually, all together (vehicle elevation) or 
vehicle attitude (roll, pitch) to be used instead. 

wheel_1_height Height of wheel 1. 
wheel_2_height Height of wheel 2. 
wheel_3_height Height of wheel 3. 
wheel_4_height Height of wheel 4. 
wheel_5_height Height of wheel 5. 
wheel_6_height Height of wheel 6. 
vehicle elevation Height of all wheels. 
egocentric_heading_angle (yaw) Commanded heading of vehicle, relative to vehicle 

coordinate system. 
roll_angle Commanded roll angle. 
pitch_angle Commanded pitch angle. 
Speed Commanded (forward) vehicle speed. 
acceleration; Commanded (forward) acceleration. 
 

 
 
Figure 3: Vehicle coordinate system and motion 
degrees of freedom. The reference frame is aligned 
with the horizontal longitudinal axis of the body (x) 
and the vertical when the vehicle is resting on a level 
plane with the suspension positions neutral (z). 
Rotation about the x axis (θx) is referred to as roll, 
about the y axis (θy) is referred to as pitch, and about 
the z axis (θz) is yaw. Because of the non-holonomic 
nature of the wheel-ground contact lateral (y) 
displacement, or velocity, cannot be directly 
controlled. The commandable degrees of freedom are, 
therefore, x, z, θx, θy, θz. In order to control vehicle 
configuration, suspension positions may be substituted 
for some of these degrees of freedom.  
 
     The basic motion degrees of freedom are shown in 
Figure 3. However, it is also necessary to command the 
suspension position to control vehicle configuration. 
Suspension position commands can be substituted for 
motion commands, so long as the total number of five 
commanded variables is maintained. However, it is 
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necessary also to ensure that the command set is 
consistent. For example, commanding vehicle body 
height, by commanding position in the direction of the 
vehicle z axis is clearly inconsistent. Similarly, directly 
commanding suspension position on opposite sides of the 
vehicle determines the roll position. Thus, commanding a 
roll angle, or rate, in addition to the suspension 
commands would lead to an inconsistency. Likewise, if 
two suspension positions were commanded on the same 
side of the vehicle, commanding a pitch angle, or rate, 
would be inconsistent. It might be noted that, on uneven 
terrain these would not, in general, be inconsistencies in 
the strict kinematic sense. However, the algorithm would 
be extremely ill conditioned, and the vehicle behavior 
would be unacceptable from a practical point of view. 
     The procedure used for designing action plans was 
first to draw out the vehicle geometry in a series of 
positions that mark transitions. They are identified by 
changes in the system mechanics, caused by changes in 
the contact configuration: either new points of contact 
with the terrain, or the breaking of old points of contact. 
At each such transition position a set of commanded 
values is identified that will take the vehicle to the next 
position. Also, one or more inequality conditions that 
identify the next transition position are formulated. Figure 
4 shows examples of transition positions together with 
commanded variables and segment end conditions. Note  
again that this is a design problem. For a vehicle with 
given geometry there are multiple possible action plans 
that could be used to cross a given obstacle. 

Vx =0.5 m / s
θy =0.4 rad,θz =0
l1 =min, l2 =min
F3 <50 kg, F4 <50 kg

 
Figure 4: Two successive positions in a crossing of a 
negative step obstacle, as laid out graphically during 
the development of an action sequence.  Here the front 
suspension is being retracted to ground the middle 
wheels. Hence the commanded variables are 
longitudinal velocity, pitch angle, yaw angle and the 
positions of the two front suspensions. The segment 

continues until the middle wheels are grounded as 
detected by the contact forces on both those wheels 
exceeding a threshold value. 
 
Each plan was then laid out in the form of a flow chart. 
This was found to be useful in explicating the interactions 
between the planner and the proprioceptive algorithm. A 
small portion of such a chart is shown on Figure 5. In this 
figure, the arrows represent stimuli, or commands. The 
circles represent actions of the planner, and the rectangles 
represent the responses of the proprioceptive software. 
The rhomboids represent inequality tests. 
 

no

yes

no

yes

Engage 
obstacle and 
pitch back

Vx =0.5m / s,
θy = −0.25,
θx = 0,θz =0, z =0

l1 <max,
l2 <max

Vx =0.5m / s,
θy = −0.45, θx =0,
l1 =max, l2 = max

l3 <max,
l4 <max

Pitch 
further back

no

yes

Vx =0.5m / s,
θy = −0.45, θx =0,
l3 =max, l4 =max

F3 >50kg,
F4 >50kg

Move 
front wheels 

onto lip

 
 
Figure 5: A small part of the flow chart of a plan for 
surmounting a positive step obstacle. The circles 
represent the plan segments executed in the planner. 
The values in the rectangles represent the commanded 
variables transmitted to the proprioceptive algorithm. 
The diamonds represent value tests to determine 
whether the current plan segment should continue or 
be terminated. 

 
Figure 6: MissionLab / Planning Layer GUI. The 
NegotiatePosObst* contains the action sequence used 
in the simulation studies. 
 
At this point the plan was in a form closely related to the 
stimulus/response semantics of Missionlab [4]. It was 
encoded in CDL {5] and implemented in Missionlab as 
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shown in Figures 6 and 7. Traditionally, MissionLab has 
been used in applications in a planar environment by 
sending commands of two degrees of freedom to the 
vehicle: heading and speed. However, when using an 
actuated suspension, three additional degrees of freedom 
are added: ride height, roll, and pitch. Missionlab was 
modified to accommodate these additional parameters. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: A general action sequence in MissionLab, as 
is used by the NegotiatePosObst* task. The circles 
represent action segments (command of the five 
degrees of freedom is specified here). The rectangles 
represent information returned by the coordination 
layer. Two failure modes are denoted, but more can be 
added. 

 
The planning layer implemented using MissionLab 

was chosen to be distinct from the coordination layer, in 
order to provide a user interface abstracted from the 
detailed computations involved with the wheel and 
suspension motors: only high level vehicle commands 
need be of concern when constructing action sequences. 
This and a graphical user input of vehicle parameters via 
slider bars allows simple construction and modification of 
action sequences for development and testing purposes. 

Once the vehicle is in action, the planning layer  
receives input from the exteroceptive sensors (e.g., vision, 
ladar) to classify any navigable obstacles or terrain, and 
then chooses an appropriate action sequence to navigate 
the terrain. The communication between the planning 
layer and the coordination layer is bidirectional (Figure 
8). After an action sequence is selected, the planning layer 
sends a set of numerical constant parameters of the type 
double or float to the proprioception layer. The constant 
parameters represent both (1) commands specifying the 
five degrees of freedom for each action segment, and (2) 
specification of an inequality signifying the timing to 
transition between action segments. The coordination 
layer then sends back (1) a Boolean Yes/No command to 
a requested transition between action segments and (2) an 
integer specifying the occurrence of a failure mode. 
Communication rates of 10 Hz are sufficient. 

In one sense, the coordination layer acts as a 
translator between the planning layer and the wheel and 
suspension motors; therefore, the planning layer is 
general and can remain the same for subtle changes in 
vehicle geometries. The coordination layer adjusts the 
wheel and suspension motor parameters to satisfy the 
specification on the degrees of freedom: heading, speed, 

and vehicle attitude (roll, pitch, and ride height; or 
individual wheel suspension heights). 
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Proprioception Layer 
 
 
 
 

Suspension 
control 

 
 
 

Monitor transitions 
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Figure 8: Action sequence communication between the 
planning and coordination / proprioception layers. 
 

In addition, the planning layer sends the parameters 
of an inequality (or a set of inequalities) to the 
coordination layer that once met, signifies satisfactory 
completion of a segment of the action sequence. The 
coordination layer uses proprioceptive sensors to monitor 
the inequality and returns a Boolean Yes/No upon its 
satisfaction.  

The planning layer receives two types of feedback 
from the coordination layer: the above mentioned signal 
to transition, and also a vehicle failure notification such as 
‘wheel slip’ or ‘unstable’.  Depending on the failure 
mode, a regression to a prior action segment will occur, or 
a new action sequence will be chosen.  
 

5. Proprioception 
 
     As was indicated above, the proprioceptive software 
translates body motion and configuration commands from 
the motion planner into force and torque commands to the 
traction and suspension actuators. The proprioceptive 
software receives inputs from sensors internal to the 
vehicle such as traction motor torque sensors, suspension 
member force sensors, suspension and wheel encoders 
and/or tachometers, body mounted and suspension-
mounted accelerometers etc. This includes an inertial 
measurement unit strapped down to the vehicle body. 
     The proprioceptive algorithm must run continuously at 
update rates of the order of 100 Hz. Therefore, speed of 
computation is an issue. Its function is very similar to the 
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corresponding algorithm used for the Adaptive 
Suspension Vehicle project [6,7], despite the apparently 
very different locomotion mechanics of a walking 
machine versus a wheeled vehicle with active suspension. 
The major differences in the software for a wheeled 
robotic vehicle with active suspension and a walking 
machine are actually at the action planning level, not the 
proprioceptive level. In both cases, the fundamental 
physical principle on which the proprioceptive algorithm 
is built is minimizing the tendency of the locomotion 
element to slip. In fact, the exact same algorithm could 
have been used. However, it does not perform well in 
extreme terrain.  
     The algorithm actually used, and the underlying 
physical and mathematical models, will be described in 
detail elsewhere [8], as space prevents a complete 
exposition here. It is based on decomposition of the 
commanded force system calculated for the vehicle into 
planar force systems in the central planes of the wheels on 
either side of the vehicle. In this respect it does require 
that the wheels on each side of the vehicle remain close to 
coplanar regardless of suspension movements. 
 The broad principles of operation of the 
proprioceptive software are that the commanded values 
received from the upper layer are compared to the 
corresponding actual values of the vehicle motion 
variables as measured by the IMU to generate a rate error 
system. This is divided by a time interval to create an 
acceleration system that is multiplied by an inertia matrix 
to generate an inertial force system. That is combined 
with the vehicle weight to generate a commanded force 
system on the vehicle body. That force system is then 
decomposed into the two planar force systems based on 
the wheel center planes on either side of the vehicle body. 
Lateral force is split between those force systems in 
proportion to the respective resultants. 
 

Figure 9: A frame from the ADAMS simulation of the 
vehicle crossing a 1 m positive step obstacle.  Tire 
deflections were not graphically modeled, so the 
apparent penetration of the tires is displaying tire 
deflections.  

The algorithm then allocates the in-plane forces to 
the wheel-ground contacts according to one of two 
principles. In easy terrain a simple form of the zero 
interaction force principle is used. This distributes weight 
and traction force as evenly as possible, and is optimal in 
weak soil conditions [7]. In strongly uneven terrain a 

different principle is used to effectively maximize 
available traction. Heuristically, the way this works is to 
select the two wheels on a side of the vehicle that are 
geometrically best located  to generate traction. The third 
wheel is then unweighted to place as much load as 
possible on the two wheels identified. Basically, 
tangential contact, or traction force is generated by 
friction with the normal load being generated by the 
vehicle weight. It therefore is optimal to place the weight 
load on those wheels that are best positioned to generate 
traction force. 
 Of course, the above is a broad brush description. 
There are a number of special cases that need to be 
accommodated, such as those in which several wheels are 
out of contact with the ground, or those in which one or 
more suspensions are against the bump stops. 
 

6. Simulation Studies 
 

Simulation models of the vehicle were developed in 
both Visual Nastran and ADAMS. The former was a high 
fidelity model including detailed models of the wheel-
ground mechanics, and the active suspension mechanism. 
The latter was a simplified model that used linearized 
active suspension and tire models, and a Coulomb friction 
model of the wheel-ground contact. The former model ran 
much slower than real-time and proved to be very 
cumbersome for purposes of debugging the coordination 
software. Thus, although the first version of the action 
sequence planner was to have been tested on this 
platform, it did not run successfully. 

The proprioceptive software was successfully run on 
the ADAMS simulation platform, which ran at near real-
time speeds with a very simplified action sequence. The 
simulated vehicle did successfully cross a 1 m step 
obstacle at 10 m/s. Figure 9 is a frame from this 
simulation. 
 

7. Discussion 
 

We have described work done on coordination of a 
robotic vehicle with variable configuration capability in 
the form of an active suspension system. The system 
described was fully designed  and coded. Initial testing 
using fully dynamic vehicle models was successful. Work 
continues on testing of the full system against a high-
fidelity simulation model. 
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